asdasdsad
[alexxy/gromacs-dssp.git] / src / dssptools.cpp
1 /*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2021, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35 /*! \internal \file
36 * \brief
37 * Implements gmx::analysismodules::Trajectory.
38 *
39 * \author Sergey Gorelov <gorelov_sv@pnpi.nrcki.ru>
40 * \author Anatoly Titov <titov_ai@pnpi.nrcki.ru>
41 * \author Alexey Shvetsov <alexxyum@gmail.com>
42 * \ingroup module_trajectoryanalysis
43 */
44
45 /*
46     There's something wrong with energy of the last residue
47 */
48
49
50 #include "dssptools.h"
51
52 #include <algorithm>
53 #include "gromacs/math/units.h"
54
55 #include "gromacs/pbcutil/pbc.h"
56 #include <gromacs/trajectoryanalysis.h>
57 #include "gromacs/trajectoryanalysis/topologyinformation.h"
58 #include <set>
59 #include <fstream>
60 #include <mutex>
61 #include <iostream>
62
63 namespace gmx
64 {
65
66 namespace analysismodules
67 {
68
69 //void ResInfo::setIndex(backboneAtomTypes atomTypeName, std::size_t atomIndex)
70 //{
71 //   _ResInfo.at(static_cast<std::size_t>(atomTypeName)) = atomIndex;
72 //}
73
74 //std::size_t ResInfo::getIndex(backboneAtomTypes atomTypeName) const
75 //{
76 //   return _ResInfo[static_cast<std::size_t>(atomTypeName)];
77 //}
78
79 std::size_t ResInfo::getIndex(backboneAtomTypes atomTypeName) const{
80     return _backboneIndices[static_cast<std::size_t>(atomTypeName)];
81 }
82
83 secondaryStructures::secondaryStructures(){
84 }
85 void secondaryStructures::initiateSearch(const std::vector<ResInfo> &ResInfoMatrix, const bool PiHelicesPreferencez){
86     SecondaryStructuresStatusMap.resize(0);
87     SecondaryStructuresStringLine.resize(0);
88     std::vector<std::size_t> temp; temp.resize(0),
89     PiHelixPreference = PiHelicesPreferencez;
90     ResInfoMap = &ResInfoMatrix;
91     SecondaryStructuresStatusMap.resize(ResInfoMatrix.size());
92     SecondaryStructuresStringLine.resize(ResInfoMatrix.size(), '~');
93 }
94
95 void secondaryStructures::secondaryStructuresData::setStatus(const secondaryStructureTypes secondaryStructureTypeName){
96     SecondaryStructuresStatusArray[static_cast<std::size_t>(secondaryStructureTypeName)] = true;
97 }
98
99 void secondaryStructures::secondaryStructuresData::setStatus(const HelixPositions helixPosition, const turnsTypes turn){
100     TurnsStatusArray[static_cast<std::size_t>(turn)] = helixPosition;
101 }
102
103 bool secondaryStructures::secondaryStructuresData::getStatus(const secondaryStructureTypes secondaryStructureTypeName) const{
104     return SecondaryStructuresStatusArray[static_cast<std::size_t>(secondaryStructureTypeName)];
105 }
106
107 bool secondaryStructures::secondaryStructuresData::isBreakPartnerWith(const secondaryStructuresData *partner) const{
108     return breakPartners[0] == partner || breakPartners[1] == partner;
109 }
110
111 HelixPositions secondaryStructures::secondaryStructuresData::getStatus(const turnsTypes turn) const{
112     return TurnsStatusArray[static_cast<std::size_t>(turn)];
113 }
114
115 void secondaryStructures::secondaryStructuresData::setBreak(secondaryStructuresData *breakPartner){
116     if (breakPartners[0] == nullptr){
117         breakPartners[0] = breakPartner;
118     }
119     else{
120         breakPartners[1] = breakPartner;
121     }
122     setStatus(secondaryStructureTypes::Break);
123 }
124
125 bool secondaryStructures::hasHBondBetween(std::size_t Donor, std::size_t Acceptor) const{ // prob should add resi name comparison ?
126     if( (*ResInfoMap)[Donor].acceptor[0] == nullptr ||
127         (*ResInfoMap)[Donor].acceptor[1] == nullptr ||
128         (*ResInfoMap)[Acceptor].info == nullptr ){
129         return false;
130     }
131     else {
132
133 //        std::cout << "Comparing DONOR " << Donor << " And ACCEPTOR " << Acceptor << " :";
134 //        std::cout << "DONOR's acceptor adresses are " << (*ResInfoMap)[Donor].acceptor[0] << ", " << (*ResInfoMap)[Donor].acceptor[1] << " and ACCEPTOR adress is " << (*ResInfoMap)[Acceptor].info << std::endl;
135 //        std::cout << "DONOR's acceptors' nr are = " << (*ResInfoMap)[Donor].acceptor[0]->nr << ", " << (*ResInfoMap)[Donor].acceptor[1]->nr << " And ACCEPTOR's nr = " << (*ResInfoMap)[Acceptor].info->nr << std::endl;
136 //        std::cout << "DONOR's acceptors' chainID are = " << (*ResInfoMap)[Donor].acceptor[0]->chainid << ", " << (*ResInfoMap)[Donor].acceptor[1]->chainid << " And ACCEPTOR's chainID = " << (*ResInfoMap)[Acceptor].info->chainid << std::endl;
137
138 //        if( ( (*ResInfoMap)[Donor].acceptor[0] == (*ResInfoMap)[Acceptor].info && (*ResInfoMap)[Donor].acceptorEnergy[0] < HBondEnergyCutOff ) ||
139 //                ( (*ResInfoMap)[Donor].acceptor[1] == (*ResInfoMap)[Acceptor].info && (*ResInfoMap)[Donor].acceptorEnergy[1] < HBondEnergyCutOff ) ){
140 //            std::cout << "HBond Exist" << std::endl;
141 //        }
142         return ( (*ResInfoMap)[Donor].acceptor[0] == (*ResInfoMap)[Acceptor].info && (*ResInfoMap)[Donor].acceptorEnergy[0] < HBondEnergyCutOff ) ||
143                 ( (*ResInfoMap)[Donor].acceptor[1] == (*ResInfoMap)[Acceptor].info && (*ResInfoMap)[Donor].acceptorEnergy[1] < HBondEnergyCutOff );
144     }
145 }
146
147 bool secondaryStructures::NoChainBreaksBetween(std::size_t Resi1, std::size_t Resi2) const{
148     bool flag{true};
149     std::size_t i{};
150     if ( Resi1 < Resi2){
151         i = Resi1;
152     }
153     else if ( Resi1 > Resi2) {
154         i = Resi2;
155     }
156     else{
157         return true;
158     }
159
160     for (; i != Resi2; ++i){
161         flag = !(SecondaryStructuresStatusMap[i].isBreakPartnerWith(&SecondaryStructuresStatusMap[i + 1]) || SecondaryStructuresStatusMap[i + 1].isBreakPartnerWith(&SecondaryStructuresStatusMap[i]));
162     }
163
164     if (!flag){
165         std::cout << "Patternsearch has detected a CHAINBREAK between " << Resi1 << " and " << Resi2 << std::endl;
166     }
167     return flag;
168 }
169
170 bridgeTypes secondaryStructures::calculateBridge(std::size_t i, std::size_t j) const{
171     if( i < 1 || j < 1 || i + 1 >= ResInfoMap->size() || j + 1 >= ResInfoMap->size() ){
172         return bridgeTypes::None;
173     }
174     if(NoChainBreaksBetween(i - 1, i + 1) && NoChainBreaksBetween(j - 1, j + 1)){
175         if((hasHBondBetween(i + 1, j) && hasHBondBetween(j, i - 1)) || (hasHBondBetween(j + 1, i) && hasHBondBetween(i, j - 1)) ){ //possibly swap
176             return bridgeTypes::ParallelBridge;
177         }
178         else if((hasHBondBetween(i + 1, j - 1) && hasHBondBetween(j + 1, i - 1)) || (hasHBondBetween(j, i) && hasHBondBetween(i, j)) ){ //possibly swap
179             return bridgeTypes::AntiParallelBridge;
180         }
181     }
182     return bridgeTypes::None;
183 }
184
185 void secondaryStructures::analyzeBridgesAndLaddersPatterns(){
186     for(std::size_t i {1}; i + 4 < SecondaryStructuresStatusMap.size(); ++i){
187         for(std::size_t j {i + 3}; j + 1 < SecondaryStructuresStatusMap.size(); ++j ){
188             bridgeTypes type {calculateBridge(i, j)};
189             if (type == bridgeTypes::None){
190                 continue;
191             }
192             bool found {false};
193         }
194     }
195
196
197
198
199
200
201
202
203
204
205
206
207 //    for (std::size_t i{ 1 }; i < HBondsMap.front().size() - 1; ++i){
208 //        for (std::size_t j{ 1 }; j < HBondsMap.front().size() - 1; ++j){
209 //            if (std::abs(static_cast<int>(i) - static_cast<int>(j)) > 2){
210 //                if ((HBondsMap[i - 1][j] && HBondsMap[j][i + 1])    ||
211 //                    (HBondsMap[j - 1][i] && HBondsMap[i][j + 1])){
212 //                    Bridge[i].push_back(j);
213 //                }
214 //                if ((HBondsMap[i][j] && HBondsMap[j][i])    ||
215 //                    (HBondsMap[i - 1][j + 1] && HBondsMap[j - 1][i + 1])){
216 //                    AntiBridge[i].push_back(j);
217 //                }
218 //            }
219 //        }
220 //    }
221 //    for (std::size_t i{ 0 }; i < HBondsMap.front().size(); ++i){
222 //        if ((!Bridge[i].empty() || !AntiBridge[i].empty())){
223 //            setStatus(i, secondaryStructureTypes::Bulge);
224 //        }
225 //    }
226 //    for (std::size_t i{ 2 }; i + 2 < HBondsMap.front().size(); ++i){
227 //        for (std::size_t j { i - 2 }; j <= (i + 2); ++j){
228 //            if (j == i){
229 //                continue;
230 //            }
231 //            else {
232 //                for (std::vector<bridgeTypes>::const_iterator bridge {Bridges.begin()}; bridge != Bridges.end(); ++bridge ){
233 //                    if (!getBridge(*bridge)[i].empty() || !getBridge(*bridge)[j].empty()){
234 //                        for (std::size_t i_resi{ 0 }; i_resi < getBridge(*bridge)[i].size(); ++i_resi){
235 //                            for (std::size_t j_resi{ 0 }; j_resi < getBridge(*bridge)[j].size(); ++j_resi){
236 //                                if (abs(static_cast<int>(getBridge(*bridge)[i][i_resi])
237 //                                        - static_cast<int>(getBridge(*bridge)[j][j_resi]))
238 //                                        && (abs(static_cast<int>(getBridge(*bridge)[i][i_resi])
239 //                                        - static_cast<int>(getBridge(*bridge)[j][j_resi]))
240 //                                        < 5)){
241 //                                    if (j < i){
242 //                                        for (std::size_t k{ 0 }; k <= i - j; ++k){
243 //                                            setStatus(i + k, secondaryStructureTypes::Ladder);
244 //                                        }
245 //                                    }
246 //                                    else{
247 //                                        for (std::size_t k{ 0 }; k <= j - i; ++k){
248 //                                            setStatus(i + k, secondaryStructureTypes::Ladder);
249 //                                        }
250 //                                    }
251 //                                }
252 //                            }
253 //                        }
254 //                    }
255 //                }
256 //            }
257 //        }
258 //    }
259 }
260
261 void secondaryStructures::analyzeTurnsAndHelicesPatterns(){
262     for(const turnsTypes &i : { turnsTypes::Turn_4, turnsTypes::Turn_3, turnsTypes::Turn_5 }){
263         std::cout << "Testing Helix_" << static_cast<std::size_t>(i) << std::endl;
264         std::size_t stride {static_cast<std::size_t>(i) + 3};
265         for(std::size_t j {0}; j + static_cast<std::size_t>(i) < SecondaryStructuresStatusMap.size(); ++j){
266             std::cout << "Testing " << j << " and " << j + stride << std::endl;
267             if ( hasHBondBetween(j, j + (static_cast<std::size_t>(i))) && NoChainBreaksBetween(j, j + stride) ){
268                 std::cout << j << " and " << j + stride << " has hbond!" << std::endl;
269                 SecondaryStructuresStatusMap[j + static_cast<std::size_t>(i)].setStatus(HelixPositions::End, i);
270
271                 for (std::size_t k {1}; k < (static_cast<std::size_t>(i)); ++k){
272                     if( SecondaryStructuresStatusMap[j + k].getStatus(i) == HelixPositions::None ){
273                         SecondaryStructuresStatusMap[j + k].setStatus(HelixPositions::Middle, i);
274                     }
275
276                 }
277
278                 if( SecondaryStructuresStatusMap[j].getStatus(i) == HelixPositions::End ){
279                     SecondaryStructuresStatusMap[j].setStatus(HelixPositions::Start_AND_End, i);
280                 }
281                 else {
282                     SecondaryStructuresStatusMap[j].setStatus(HelixPositions::Start, i);
283                 }
284             }
285         }
286     }
287
288     for(const turnsTypes &i : { turnsTypes::Turn_4, turnsTypes::Turn_3, turnsTypes::Turn_5 }){
289         std::size_t stride {static_cast<std::size_t>(i) + 3};
290         for(std::size_t j {1}; j + stride < SecondaryStructuresStatusMap.size(); ++j){
291             if ( (SecondaryStructuresStatusMap[j - 1].getStatus(i) == HelixPositions::Start || SecondaryStructuresStatusMap[j - 1].getStatus(i) == HelixPositions::Start_AND_End ) &&
292                  (SecondaryStructuresStatusMap[j].getStatus(i) == HelixPositions::Start || SecondaryStructuresStatusMap[j].getStatus(i) == HelixPositions::Start_AND_End ) ){
293                 bool empty = true;
294                 secondaryStructureTypes Helix;
295                 switch(i){
296                 case turnsTypes::Turn_3:
297                     for (std::size_t k {0}; empty && k < stride; ++k){
298                         empty = SecondaryStructuresStatusMap[j + k].getStatus(secondaryStructureTypes::Loop ) || SecondaryStructuresStatusMap[j + k].getStatus(secondaryStructureTypes::Helix_3);
299                     }
300                     Helix = secondaryStructureTypes::Helix_3;
301                     break;
302                 case turnsTypes::Turn_5:
303                     for (std::size_t k {0}; empty && k < stride; ++k){
304                         empty = SecondaryStructuresStatusMap[j + k].getStatus(secondaryStructureTypes::Loop ) || SecondaryStructuresStatusMap[j + k].getStatus(secondaryStructureTypes::Helix_5) || (PiHelixPreference && SecondaryStructuresStatusMap[j + k].getStatus(secondaryStructureTypes::Helix_5));
305                     }
306                     Helix = secondaryStructureTypes::Helix_4;
307                     break;
308                 default:
309                     Helix = secondaryStructureTypes::Helix_4;
310                     break;
311                 }
312                 std::cout << j << " is HELIX" << std::endl;
313                 if ( empty ){
314                     for(std::size_t k {0}; k < (static_cast<std::size_t>(i)); ++k ){
315                         SecondaryStructuresStatusMap[j + k].setStatus(Helix);
316                     }
317                 }
318             }
319         }
320     }
321
322     for(std::size_t i {1}; i + 1 < SecondaryStructuresStatusMap.size(); ++i){
323         if (SecondaryStructuresStatusMap[i].getStatus(secondaryStructureTypes::Loop)){
324             bool isTurn = false;
325             for(const turnsTypes &j : {turnsTypes::Turn_3, turnsTypes::Turn_4, turnsTypes::Turn_5}){
326                 std::size_t stride {static_cast<std::size_t>(i) + 3};
327                 for(std::size_t k {1}; k < stride; ++k){
328                     isTurn = (i >= k) && (SecondaryStructuresStatusMap[i - k].getStatus(j) == HelixPositions::Start || SecondaryStructuresStatusMap[i - k].getStatus(j) == HelixPositions::Start_AND_End) ;
329                 }
330             }
331
332             if (isTurn){
333                 SecondaryStructuresStatusMap[i].setStatus(secondaryStructureTypes::Turn);
334             }
335             else if (SecondaryStructuresStatusMap[i].getStatus(secondaryStructureTypes::Bend)){
336                 SecondaryStructuresStatusMap[i].setStatus(secondaryStructureTypes::Bend);
337             }
338         }
339     }
340
341 }
342
343 void secondaryStructures::analyzePPHelicesPatterns(){}
344
345 std::string secondaryStructures::patternSearch(){
346
347 //    analyzeBridgesAndLaddersPatterns();
348     analyzeTurnsAndHelicesPatterns();
349 //    analyzePPHelicesPatterns();
350
351 //    for(std::size_t i {0}; i < ResInfoMap->size(); ++i){
352 //        std::cout << (*ResInfoMap)[i].info->nr << " " << *((*ResInfoMap)[i].info->name) << std::endl;
353 //    }
354
355 //    std::cout.precision(5);
356 //    for(std::size_t i{0}; i < ResInfoMap->size(); ++i, std::cout << std::endl << std::endl){
357 //        std::cout << (*ResInfoMap)[i].info->nr << " " << *((*ResInfoMap)[i].info->name) ;
358 //        if ( (*ResInfoMap)[i].donor[0] != nullptr ){
359 //            std::cout << " has donor[0] = " << (*ResInfoMap)[i].donor[0]->nr << " " << *((*ResInfoMap)[i].donor[0]->name) << " with E = " << (*ResInfoMap)[i].donorEnergy[0] << " and" ;
360 //        }
361 //        else {
362 //            std::cout << " has no donor[0] and" ;
363 //        }
364 //        if ( (*ResInfoMap)[i].acceptor[0] != nullptr ){
365 //            std::cout << " has acceptor[0] = " << (*ResInfoMap)[i].acceptor[0]->nr << " " << *((*ResInfoMap)[i].acceptor[0]->name) << " with E = " << (*ResInfoMap)[i].acceptorEnergy[0] ;
366 //        }
367 //        else {
368 //            std::cout << " has no acceptor[0]" ;
369 //        }
370 //        std::cout << std::endl << "Also, " << (*ResInfoMap)[i].info->nr << " " << *((*ResInfoMap)[i].info->name);
371 //        if ( (*ResInfoMap)[i].donor[1] != nullptr ){
372 //            std::cout << " has donor[1] = " << (*ResInfoMap)[i].donor[1]->nr << " " << *((*ResInfoMap)[i].donor[1]->name) << " with E = " << (*ResInfoMap)[i].donorEnergy[1] << " and" ;
373 //        }
374 //        else {
375 //            std::cout << " has no donor[1] and" ;
376 //        }
377 //        if ( (*ResInfoMap)[i].acceptor[1] != nullptr ){
378 //            std::cout << " has acceptor[1] = " << (*ResInfoMap)[i].acceptor[1]->nr << " " << *((*ResInfoMap)[i].acceptor[1]->name) << " with E = " << (*ResInfoMap)[i].acceptorEnergy[1] ;
379 //        }
380 //        else {
381 //            std::cout << " has no acceptor[1]" ;
382 //        }
383 //    }
384
385     /*Write Data*/
386
387     for(std::size_t i {static_cast<std::size_t>(secondaryStructureTypes::Bend)}; i != static_cast<std::size_t>(secondaryStructureTypes::Count); ++i){
388         for(std::size_t j {0}; j < SecondaryStructuresStatusMap.size(); ++j){
389             if (SecondaryStructuresStatusMap[j].getStatus(static_cast<secondaryStructureTypes>(i))){
390                 SecondaryStructuresStringLine[j] = secondaryStructureTypeNames[i] ;
391             }
392         }
393     }
394
395     /*Add breaks*/
396
397     if(SecondaryStructuresStatusMap.size() > 1){
398         for(std::size_t i {0}, linefactor{1}; i + 1 < SecondaryStructuresStatusMap.size(); ++i){
399             if( SecondaryStructuresStatusMap[i].getStatus(secondaryStructureTypes::Break) && SecondaryStructuresStatusMap[i + 1].getStatus(secondaryStructureTypes::Break) ){
400                 if(SecondaryStructuresStatusMap[i].isBreakPartnerWith(&SecondaryStructuresStatusMap[i + 1]) && SecondaryStructuresStatusMap[i + 1].isBreakPartnerWith(&SecondaryStructuresStatusMap[i]) ){
401                     SecondaryStructuresStringLine.insert(SecondaryStructuresStringLine.begin() + i + linefactor, secondaryStructureTypeNames[secondaryStructureTypes::Break]);
402                     ++linefactor;
403                 }
404             }
405         }
406     }
407     return SecondaryStructuresStringLine;
408 }
409
410 secondaryStructures::~secondaryStructures(){
411     SecondaryStructuresStatusMap.resize(0);
412     SecondaryStructuresStringLine.resize(0);
413 }
414
415 DsspTool::DsspStorage::DsspStorage(){
416     storaged_data.resize(0);
417 }
418
419 void DsspTool::DsspStorage::clearAll(){
420     storaged_data.resize(0);
421 }
422
423 std::mutex DsspTool::DsspStorage::mx;
424
425 void DsspTool::DsspStorage::storageData(int frnr, std::string data){
426     std::lock_guard<std::mutex> guardian(mx);
427     std::pair<int, std::string> datapair(frnr, data);
428     storaged_data.push_back(datapair);
429 }
430
431 std::vector<std::pair<int, std::string>> DsspTool::DsspStorage::returnData(){
432     std::sort(storaged_data.begin(), storaged_data.end());
433     return storaged_data;
434 }
435
436 void alternateNeighborhoodSearch::setCutoff(const real &cutoff_init){
437     cutoff = cutoff_init;
438 }
439
440 void alternateNeighborhoodSearch::FixAtomCoordinates(real &coordinate, const real vector_length){
441     while (coordinate < 0) {
442         coordinate += vector_length;
443     }
444     while (coordinate >= vector_length) {
445         coordinate -= vector_length;
446     }
447 }
448
449 void alternateNeighborhoodSearch::ReCalculatePBC(int &x, const int &x_max) {
450     if (x < 0) {
451         x += x_max;
452     }
453     if (x >= x_max) {
454         x -= x_max;
455     }
456 }
457
458 void alternateNeighborhoodSearch::GetMiniBoxesMap(const t_trxframe &fr, const std::vector<ResInfo> &IndexMap){
459     rvec coordinates, box_vector_length;
460     num_of_miniboxes.resize(0);
461     num_of_miniboxes.resize(3);
462     for (std::size_t i{XX}; i <= ZZ; ++i) {
463         box_vector_length[i] = std::sqrt(
464                     std::pow(fr.box[i][XX], 2) + std::pow(fr.box[i][YY], 2) + std::pow(fr.box[i][ZZ], 2));
465         num_of_miniboxes[i] = std::floor((box_vector_length[i] / cutoff)) + 1;
466     }
467     MiniBoxesMap.resize(0);
468     MiniBoxesReverseMap.resize(0);
469     MiniBoxesMap.resize(num_of_miniboxes[XX], std::vector<std::vector<std::vector<std::size_t> > >(
470                              num_of_miniboxes[YY], std::vector<std::vector<std::size_t> >(
471                              num_of_miniboxes[ZZ], std::vector<std::size_t>(
472                              0))));
473     MiniBoxesReverseMap.resize(IndexMap.size(), std::vector<std::size_t>(3));
474     for (std::vector<ResInfo>::const_iterator i {IndexMap.begin()}; i != IndexMap.end(); ++i) {
475         for (std::size_t j{XX}; j <= ZZ; ++j) {
476             coordinates[j] = fr.x[i->getIndex(backboneAtomTypes::AtomCA)][j];
477             FixAtomCoordinates(coordinates[j], box_vector_length[j]);
478         }
479         MiniBoxesMap[std::floor(coordinates[XX] / cutoff)][std::floor(coordinates[YY] / cutoff)][std::floor(
480                           coordinates[ZZ] / cutoff)].push_back(i - IndexMap.begin());
481         for (std::size_t j{XX}; j <= ZZ; ++j){
482             MiniBoxesReverseMap[i - IndexMap.begin()][j] = std::floor(coordinates[j] / cutoff);
483         }
484     }
485 }
486
487 void alternateNeighborhoodSearch::AltPairSearch(const t_trxframe &fr, const std::vector<ResInfo> &IndexMap){
488     GetMiniBoxesMap(fr, IndexMap);
489     MiniBoxSize[XX] = MiniBoxesMap.size();
490     MiniBoxSize[YY] = MiniBoxesMap.front().size();
491     MiniBoxSize[ZZ] = MiniBoxesMap.front().front().size();
492     PairMap.resize(0);
493     PairMap.resize(IndexMap.size(), std::vector<bool>(IndexMap.size(), false));
494     ResiI = PairMap.begin();
495     ResiJ = ResiI->begin();
496
497     for (std::vector<ResInfo>::const_iterator i = IndexMap.begin(); i != IndexMap.end(); ++i){
498         for (offset[XX] = -1; offset[XX] <= 1; ++offset[XX]) {
499             for (offset[YY] = -1; offset[YY] <= 1; ++offset[YY]) {
500                 for (offset[ZZ] = -1; offset[ZZ] <= 1; ++offset[ZZ]) {
501                     for (std::size_t k{XX}; k <= ZZ; ++k) {
502                         fixBox[k] = MiniBoxesReverseMap[i - IndexMap.begin()][k] + offset[k];
503                         ReCalculatePBC(fixBox[k], MiniBoxSize[k]);
504                     }
505                     for (std::size_t j{0}; j < MiniBoxesMap[fixBox[XX]][fixBox[YY]][fixBox[ZZ]].size(); ++j) {
506                         if ( (i - IndexMap.begin()) != MiniBoxesMap[fixBox[XX]][fixBox[YY]][fixBox[ZZ]][j]){
507                             PairMap[i - IndexMap.begin()][MiniBoxesMap[fixBox[XX]][fixBox[YY]][fixBox[ZZ]][j]] = true;
508                             PairMap[MiniBoxesMap[fixBox[XX]][fixBox[YY]][fixBox[ZZ]][j]][i - IndexMap.begin()] = true;
509                         }
510                     }
511                 }
512             }
513         }
514     }
515 }
516
517 bool alternateNeighborhoodSearch::findNextPair(){
518
519     if(!PairMap.size()){
520         return false;
521     }
522
523     for(; ResiI != PairMap.end(); ++ResiI, ResiJ = ResiI->begin() ){
524         for(; ResiJ != ResiI->end(); ++ResiJ){
525             if(*ResiJ){
526                 resiIpos = ResiI - PairMap.begin();
527                 resiJpos = ResiJ - ResiI->begin();
528                 if ( ResiJ != ResiI->end() ){
529                     ++ResiJ;
530                 }
531                 else if (ResiI != PairMap.end()) {
532                     ++ResiI;
533                     ResiJ = ResiI->begin();
534                 }
535                 else {
536                     return false; // ???
537                 }
538                 return true;
539             }
540         }
541     }
542
543     return false;
544 }
545
546 std::size_t alternateNeighborhoodSearch::getResiI() const {
547     return resiIpos;
548 }
549
550 std::size_t alternateNeighborhoodSearch::getResiJ() const {
551     return resiJpos;
552 }
553
554
555 DsspTool::DsspStorage DsspTool::Storage;
556
557 DsspTool::DsspTool(){
558 }
559
560 void DsspTool::calculateBends(const t_trxframe &fr, const t_pbc *pbc)
561 {
562    const float benddegree{ 70.0 }, maxdist{ 2.5 };
563    float       degree{ 0 }, vdist{ 0 }, vprod{ 0 };
564    gmx::RVec   a{ 0, 0, 0 }, b{ 0, 0, 0 };
565    for (std::size_t i{ 0 }; i + 1 < IndexMap.size(); ++i)
566    {
567        if (CalculateAtomicDistances(static_cast<int>(IndexMap[i].getIndex(backboneAtomTypes::AtomC)),
568                                     static_cast<int>(IndexMap[i + 1].getIndex(backboneAtomTypes::AtomN)),
569                                     fr,
570                                     pbc)
571            > maxdist)
572        {
573            PatternSearch.SecondaryStructuresStatusMap[i].setBreak(&PatternSearch.SecondaryStructuresStatusMap[i + 1]);
574            PatternSearch.SecondaryStructuresStatusMap[i + 1].setBreak(&PatternSearch.SecondaryStructuresStatusMap[i]);
575
576 //           std::cout << "Break between " << i + 1 << " and " << i + 2 << std::endl;
577        }
578    }
579    for (std::size_t i{ 2 }; i + 2 < IndexMap.size() ; ++i)
580    {
581        if (PatternSearch.SecondaryStructuresStatusMap[i - 2].getStatus(secondaryStructureTypes::Break) ||
582            PatternSearch.SecondaryStructuresStatusMap[i - 1].getStatus(secondaryStructureTypes::Break) ||
583            PatternSearch.SecondaryStructuresStatusMap[i].getStatus(secondaryStructureTypes::Break) ||
584            PatternSearch.SecondaryStructuresStatusMap[i + 1].getStatus(secondaryStructureTypes::Break)
585           )
586        {
587            continue;
588        }
589        for (int j{ 0 }; j < 3; ++j)
590        {
591            a[j] = fr.x[IndexMap[i].getIndex(backboneAtomTypes::AtomCA)][j]
592                   - fr.x[IndexMap[i - 2].getIndex(backboneAtomTypes::AtomCA)][j];
593            b[j] = fr.x[IndexMap[i + 2].getIndex(backboneAtomTypes::AtomCA)][j]
594                   - fr.x[IndexMap[i].getIndex(backboneAtomTypes::AtomCA)][j];
595        }
596        vdist = (a[0] * b[0]) + (a[1] * b[1]) + (a[2] * b[2]);
597        vprod = CalculateAtomicDistances(IndexMap[i - 2].getIndex(backboneAtomTypes::AtomCA),
598                                         IndexMap[i].getIndex(backboneAtomTypes::AtomCA),
599                                         fr,
600                                         pbc)
601                * gmx::c_angstrom / gmx::c_nano
602                * CalculateAtomicDistances(IndexMap[i].getIndex(backboneAtomTypes::AtomCA),
603                                           IndexMap[i + 2].getIndex(backboneAtomTypes::AtomCA),
604                                           fr,
605                                           pbc)
606                * gmx::c_angstrom / gmx::c_nano;
607        degree = std::acos(vdist / vprod) * gmx::c_rad2Deg;
608        if (degree > benddegree)
609        {
610            PatternSearch.SecondaryStructuresStatusMap[i].setStatus(secondaryStructureTypes::Bend);
611        }
612    }
613 }
614
615 void DsspTool::calculateHBondEnergy(ResInfo& Donor,
616                        ResInfo& Acceptor,
617                        const t_trxframe&          fr,
618                        const t_pbc*               pbc)
619 {
620    /*
621     * DSSP uses eq from dssp 2.x
622     * kCouplingConstant = 27.888,  //  = 332 * 0.42 * 0.2
623     * E = k * (1/rON + 1/rCH - 1/rOH - 1/rCN) where CO comes from one AA and NH from another
624     * if R is in A
625     * Hbond if E < -0.5
626     */
627
628     const float kCouplingConstant = 27.888;
629     const float minimalAtomDistance{ 0.5 },
630             minEnergy{ -9.9 };
631     float HbondEnergy{ 0 };
632     float distanceNO{ 0 }, distanceHC{ 0 }, distanceHO{ 0 }, distanceNC{ 0 };
633
634    if( !(Donor.is_proline) ){
635        if (Acceptor.getIndex(backboneAtomTypes::AtomC) && Acceptor.getIndex(backboneAtomTypes::AtomO)
636            && Donor.getIndex(backboneAtomTypes::AtomN) && ( Donor.getIndex(backboneAtomTypes::AtomH) || (initParams.addHydrogens) ) )  // Kinda ew
637        {
638
639            distanceNO = CalculateAtomicDistances(
640                    Donor.getIndex(backboneAtomTypes::AtomN), Acceptor.getIndex(backboneAtomTypes::AtomO), fr, pbc);
641            distanceNC = CalculateAtomicDistances(
642                    Donor.getIndex(backboneAtomTypes::AtomN), Acceptor.getIndex(backboneAtomTypes::AtomC), fr, pbc);
643
644            if (initParams.addHydrogens){
645                if (Donor.prevResi != nullptr && Donor.prevResi->getIndex(backboneAtomTypes::AtomC) && Donor.prevResi->getIndex(backboneAtomTypes::AtomO)){
646 //                   std::cout << "On donor " << Donor.info->nr << *(Donor.info->name) << std::endl;
647 //                   std::cout << "Prev donor is " << Donor.prevResi->info->nr << *(Donor.prevResi->info->name) << std::endl;
648 //                   std::cout << "Prev C index is " << Donor.prevResi->getIndex(backboneAtomTypes::AtomC) << std::endl;
649 //                   std::cout << "Prev O index is " << Donor.prevResi->getIndex(backboneAtomTypes::AtomO) << std::endl;
650                    rvec atomH{};
651                    float prevCODist {CalculateAtomicDistances(Donor.prevResi->getIndex(backboneAtomTypes::AtomC), Donor.prevResi->getIndex(backboneAtomTypes::AtomO), fr, pbc)};
652                    for (int i{XX}; i <= ZZ; ++i){
653                        float prevCO = fr.x[Donor.prevResi->getIndex(backboneAtomTypes::AtomC)][i] - fr.x[Donor.prevResi->getIndex(backboneAtomTypes::AtomO)][i];
654                        atomH[i] = prevCO / prevCODist;
655                    }
656                    distanceHO = CalculateAtomicDistances(atomH, Acceptor.getIndex(backboneAtomTypes::AtomO), fr, pbc);
657                    distanceHC = CalculateAtomicDistances(atomH, Acceptor.getIndex(backboneAtomTypes::AtomC), fr, pbc);
658                }
659                else{
660                    distanceHO = distanceNO;
661                    distanceHC = distanceNC;
662                }
663            }
664            else {
665                distanceHO = CalculateAtomicDistances(
666                        Donor.getIndex(backboneAtomTypes::AtomH), Acceptor.getIndex(backboneAtomTypes::AtomO), fr, pbc);
667                distanceHC = CalculateAtomicDistances(
668                        Donor.getIndex(backboneAtomTypes::AtomH), Acceptor.getIndex(backboneAtomTypes::AtomC), fr, pbc);
669            }
670
671            if (CalculateAtomicDistances(
672                        Donor.getIndex(backboneAtomTypes::AtomCA), Acceptor.getIndex(backboneAtomTypes::AtomCA), fr, pbc)
673                < minimalCAdistance)
674            {
675                if ((distanceNO < minimalAtomDistance) || (distanceHC < minimalAtomDistance)
676                    || (distanceHO < minimalAtomDistance) || (distanceNC < minimalAtomDistance))
677                {
678                    HbondEnergy = minEnergy;
679
680 //                   std::cout << "HBOND exists cause of distance" << std::endl;
681                }
682                else
683                {
684                    HbondEnergy =
685                            kCouplingConstant
686                            * ((1 / distanceNO) + (1 / distanceHC) - (1 / distanceHO) - (1 / distanceNC));
687                    HbondEnergy = std::round(HbondEnergy * 1000) / 1000;
688
689 //                   std::cout.precision(5);
690 //                   std::cout << "Calculated ENERGY = " << HbondEnergy << std::endl;
691
692 //                   if ( HbondEnergy == 0){
693 //                       std::cout << "Calculated ENERGY = " << HbondEnergy << " For donor " << Donor.info->nr << " and acceptor " << Acceptor.info->nr << std::endl;
694 //                   }
695
696                    if ( HbondEnergy < minEnergy ){
697                        HbondEnergy = minEnergy;
698                    }
699                }
700            }
701        }
702    }
703 //   else {
704 //       std::cerr << "PRO DETECTED! THIS IS RESI № " << Donor.info->nr << std::endl; //IT WORKS JUST FINE
705 //   }
706
707    if (HbondEnergy < Donor.acceptorEnergy[0]){
708        Donor.acceptor[1] = Donor.acceptor[0];
709        Donor.acceptor[0] = Acceptor.info;
710        Donor.acceptorEnergy[0] = HbondEnergy;
711    }
712    else if (HbondEnergy < Donor.acceptorEnergy[1]){
713        Donor.acceptor[1] = Acceptor.info;
714        Donor.acceptorEnergy[1] = HbondEnergy;
715    }
716
717    if (HbondEnergy < Acceptor.donorEnergy[0]){
718        Acceptor.donor[1] = Acceptor.donor[0];
719        Acceptor.donor[0] = Donor.info;
720        Acceptor.donorEnergy[0] = HbondEnergy;
721    }
722    else if (HbondEnergy < Acceptor.donorEnergy[1]){
723        Acceptor.donor[1] = Donor.info;
724        Acceptor.donorEnergy[1] = HbondEnergy;
725    }
726 }
727
728
729 /* Calculate Distance From B to A */
730 float DsspTool::CalculateAtomicDistances(const int &A, const int &B, const t_trxframe &fr, const t_pbc *pbc)
731 {
732    gmx::RVec r{ 0, 0, 0 };
733    pbc_dx(pbc, fr.x[A], fr.x[B], r.as_vec());
734 //   return r.norm(); // TODO * gmx::c_nm2A; if not PDB, i guess????
735    return r.norm() * gmx::c_nm2A; // TODO * gmx::c_nm2A; if not PDB, i guess????
736 }
737
738 /* Calculate Distance From B to A, where A is only fake coordinates */
739 float DsspTool::CalculateAtomicDistances(const rvec &A, const int &B, const t_trxframe &fr, const t_pbc *pbc)
740 {
741    gmx::RVec r{ 0, 0, 0 };
742    pbc_dx(pbc, A, fr.x[B], r.as_vec());
743 //   return r.norm(); // TODO * gmx::c_nm2A; if not PDB, i guess????
744    return r.norm() * gmx::c_nm2A; // TODO * gmx::c_nm2A; if not PDB, i guess????
745 }
746
747 void DsspTool::initAnalysis(/*const TrajectoryAnalysisSettings &settings,*/const TopologyInformation& top, const initParameters &initParamz)
748 {
749
750    std::cout << "Init started" << std::endl;
751    initParams = initParamz;
752    ResInfo _backboneAtoms;
753    std::size_t                 i{ 0 };
754    std::string proLINE;
755    int resicompare{ top.atoms()->atom[static_cast<std::size_t>(*(initParams.sel_.atomIndices().begin()))].resind };
756    IndexMap.resize(0);
757    IndexMap.push_back(_backboneAtoms);
758    IndexMap[i].info = &(top.atoms()->resinfo[resicompare]);
759    proLINE = *(IndexMap[i].info->name);
760    if( proLINE.compare("PRO") == 0 ){
761        IndexMap[i].is_proline = true;
762    }
763
764    for (gmx::ArrayRef<const int>::iterator ai{ initParams.sel_.atomIndices().begin() }; (ai != initParams.sel_.atomIndices().end()); ++ai){
765        if (resicompare != top.atoms()->atom[static_cast<std::size_t>(*ai)].resind)
766        {
767            ++i;
768            resicompare = top.atoms()->atom[static_cast<std::size_t>(*ai)].resind;
769            IndexMap.emplace_back(_backboneAtoms);
770            IndexMap[i].info = &(top.atoms()->resinfo[resicompare]);
771            proLINE = *(IndexMap[i].info->name);
772            if( proLINE.compare("PRO") == 0 ){
773                IndexMap[i].is_proline = true;
774            }
775
776        }
777        std::string atomname(*(top.atoms()->atomname[static_cast<std::size_t>(*ai)]));
778        if (atomname == backboneAtomTypeNames[backboneAtomTypes::AtomCA])
779        {
780            IndexMap[i]._backboneIndices[static_cast<std::size_t>(backboneAtomTypes::AtomCA)] = *ai;
781        }
782        else if (atomname == backboneAtomTypeNames[backboneAtomTypes::AtomC])
783        {
784            IndexMap[i]._backboneIndices[static_cast<std::size_t>(backboneAtomTypes::AtomC)] = *ai;
785        }
786        else if (atomname == backboneAtomTypeNames[backboneAtomTypes::AtomO])
787        {
788            IndexMap[i]._backboneIndices[static_cast<std::size_t>(backboneAtomTypes::AtomO)] = *ai;
789        }
790        else if (atomname == backboneAtomTypeNames[backboneAtomTypes::AtomN])
791        {
792            IndexMap[i]._backboneIndices[static_cast<std::size_t>(backboneAtomTypes::AtomN)] = *ai;
793        }
794        else if (atomname == backboneAtomTypeNames[backboneAtomTypes::AtomH] && initParamz.addHydrogens == false) // Юзать водород в структуре
795        {
796            IndexMap[i]._backboneIndices[static_cast<std::size_t>(backboneAtomTypes::AtomH)] = *ai;
797        }
798
799 //       if( atomname == backboneAtomTypeNames[backboneAtomTypes::AtomCA] || atomname == backboneAtomTypeNames[backboneAtomTypes::AtomC] || atomname == backboneAtomTypeNames[backboneAtomTypes::AtomO]
800 //       || atomname == backboneAtomTypeNames[backboneAtomTypes::AtomN] || atomname == backboneAtomTypeNames[backboneAtomTypes::AtomH]){
801 //           std::cout << "Atom " << atomname << " №" << *ai << " From Resi " << *(top.atoms()->resinfo[i].name) << " №" << resicompare << std::endl;
802 //       }
803    }
804
805    for (std::size_t j {1}; j < IndexMap.size(); ++j){
806        IndexMap[j].prevResi = &(IndexMap[j - 1]);
807
808        IndexMap[j - 1].nextResi = &(IndexMap[j]);
809
810 //           std::cout << "Resi " << IndexMap[i].info->nr << *(IndexMap[i].info->name) << std::endl;
811 //           std::cout << "Prev resi is " << IndexMap[i].prevResi->info->nr << *(IndexMap[i].prevResi->info->name) << std::endl;
812 //           std::cout << "Prev resi's next resi is " << IndexMap[i - 1].nextResi->info->nr << *(IndexMap[i - 1].nextResi->info->name) << std::endl;
813 //         std::cout << IndexMap[j].prevResi->info->nr;
814 //         std::cout << *(IndexMap[j].prevResi->info->name) ;
815 //         std::cout << " have CA = " << IndexMap[j].prevResi->getIndex(backboneAtomTypes::AtomCA) ;
816 //         std::cout << " C = " << IndexMap[j].prevResi->getIndex(backboneAtomTypes::AtomC);
817 //         std::cout << " O = " << IndexMap[j].prevResi->getIndex(backboneAtomTypes::AtomO);
818 //         std::cout << " N = " << IndexMap[j].prevResi->getIndex(backboneAtomTypes::AtomN);
819 //         std::cout << " H = " << IndexMap[j].prevResi->getIndex(backboneAtomTypes::AtomH) << std::endl;
820    }
821
822    nres = i + 1;
823 }
824
825 void DsspTool::analyzeFrame(int frnr, const t_trxframe &fr, t_pbc *pbc)
826 {
827
828     switch(initParams.NBS){
829     case (NBSearchMethod::Classique): {
830
831         // store positions of CA atoms to use them for nbSearch
832         std::vector<gmx::RVec> positionsCA_;
833         for (std::size_t i{ 0 }; i < IndexMap.size(); ++i)
834         {
835             positionsCA_.emplace_back(fr.x[IndexMap[i].getIndex(backboneAtomTypes::AtomCA)]);
836         }
837
838         AnalysisNeighborhood nb_;
839         nb_.setCutoff(initParams.cutoff_);
840         AnalysisNeighborhoodPositions       nbPos_(positionsCA_);
841         gmx::AnalysisNeighborhoodSearch     start      = nb_.initSearch(pbc, nbPos_);
842         gmx::AnalysisNeighborhoodPairSearch pairSearch = start.startPairSearch(nbPos_);
843         gmx::AnalysisNeighborhoodPair       pair;
844         while (pairSearch.findNextPair(&pair))
845         {
846             if(CalculateAtomicDistances(
847                         IndexMap[pair.refIndex()].getIndex(backboneAtomTypes::AtomCA), IndexMap[pair.testIndex()].getIndex(backboneAtomTypes::AtomCA), fr, pbc)
848                 < minimalCAdistance){
849                 calculateHBondEnergy(IndexMap[pair.refIndex()], IndexMap[pair.testIndex()], fr, pbc);
850                 if (IndexMap[pair.testIndex()].info != IndexMap[pair.refIndex() + 1].info){
851                     calculateHBondEnergy(IndexMap[pair.testIndex()], IndexMap[pair.refIndex()], fr, pbc);
852                 }
853             }
854         }
855
856         break;
857     }
858     case (NBSearchMethod::Experimental): { // TODO FIX
859
860         alternateNeighborhoodSearch as_;
861
862         as_.setCutoff(initParams.cutoff_);
863
864         as_.AltPairSearch(fr, IndexMap);
865
866         while (as_.findNextPair()){
867             if(CalculateAtomicDistances(
868                         IndexMap[as_.getResiI()].getIndex(backboneAtomTypes::AtomCA), IndexMap[as_.getResiJ()].getIndex(backboneAtomTypes::AtomCA), fr, pbc)
869                 < minimalCAdistance){
870                 calculateHBondEnergy(IndexMap[as_.getResiI()], IndexMap[as_.getResiJ()], fr, pbc);
871                 if (IndexMap[as_.getResiJ()].info != IndexMap[as_.getResiI() + 1].info){
872                     calculateHBondEnergy(IndexMap[as_.getResiJ()], IndexMap[as_.getResiI()], fr, pbc);
873                 }
874             }
875         }
876
877         break;
878     }
879     default: {
880
881         for(std::vector<ResInfo>::iterator Donor {IndexMap.begin()}; Donor != IndexMap.end() ; ++Donor){
882             for(std::vector<ResInfo>::iterator Acceptor {Donor + 1} ; Acceptor != IndexMap.end() ; ++Acceptor){
883                 if(CalculateAtomicDistances(
884                             Donor->getIndex(backboneAtomTypes::AtomCA), Acceptor->getIndex(backboneAtomTypes::AtomCA), fr, pbc)
885                     < minimalCAdistance){
886                     calculateHBondEnergy(*Donor, *Acceptor, fr, pbc);
887                     if (Acceptor != Donor + 1){
888                         calculateHBondEnergy(*Acceptor, *Donor, fr, pbc);
889                     }
890                 }
891             };
892         };
893         break;
894     }
895     }
896
897
898 //    for(std::size_t i {0}; i < IndexMap.size(); ++i){
899 //        std::cout << IndexMap[i].info->nr << " " << *(IndexMap[i].info->name) << std::endl;
900 //    }
901
902    PatternSearch.initiateSearch(IndexMap, initParams.PPHelices);
903    calculateBends(fr, pbc);
904    Storage.storageData(frnr, PatternSearch.patternSearch());
905
906 }
907
908 std::vector<std::pair<int, std::string>> DsspTool::getData(){
909     return Storage.returnData();
910 }
911
912 } // namespace analysismodules
913
914 } // namespace gmx